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Abstract

Central insulin resistance (IR) influences striatal dopamine (DA) tone, an important determi-

nant of behavioral self-regulation. We hypothesized that an association exists between the

degree of peripheral IR and impulse control, mediated by the impact of IR on brain circuits

controlling the speed of executing “go” and/or “stop” responses. We measured brain activa-

tion and associated performance on a stop signal task (SST) in obese adults with type 2 dia-

betes (age, 48.1 ± 6.9 yrs (mean ± SD); BMI, 36.5 ± 4.0 kg/m2; HOMA-IR, 7.2 ± 4.1; 12

male, 18 female). Increasing IR, but not BMI, was a predictor of shorter critical stop signal

delay (cSSD), a measure of the time window during which a go response can be success-

fully countermanded (R2 = 0.12). This decline was explained by an IR-associated increase

in go speed (R2 = 0.13) with little impact of IR or BMI on stop speed. Greater striatal fMRI

activation contrast in stop error (SE) compared with stop success (SS) trials (CONSE>SS)

was a significant predictor of faster go speeds (R2 = 0.33, p = 0.002), and was itself pre-

dicted by greater IR (CONSE>SS vs HOMA-IR: R2 = 0.10, p = 0.04). Furthermore, this impact

of IR on striatal activation was a significant mediator of the faster go speeds and greater

impulsivity observed with greater IR. These findings suggest a neural mechanism by which

IR may increase impulsivity and degrade behavioral self-regulation.

Introduction

Insulin receptors are broadly distributed throughout the brain [1, 2], and pre-clinical and

human subject studies support the idea that beyond its role as a satiety signal, insulin signaling

in the brain modulates the activity of brain regions and networks subserving a diverse réper-

toire of cognitive, executive, reward and motor functions involved in, but not limited to feed-

ing behavior [3–9] (and for reviews, see [10, 11]). Obesogenic diets and obesity are strongly

associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM) and there is
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compelling evidence for development of a phenotype of central insulin resistance [7, 11, 12]

that may precede [13, 14], and even drive the development of peripheral IR.

Central insulin signaling plays an important role in maintaining optimal dopamine (DA)

tone in ventral and dorsal striatum by tuning rates of synaptic DA release [15] and clearance

[16, 17], and impairments in central insulin signaling have a direct impact on brain DA sys-

tems [17–22]. This and the central role of DA signaling in attention, cognition and impulsivity

[23–29], suggest impairments in central insulin signaling as a possible proximal cause of the

reports of diabetes mellitus-associated deficits in behavioral self-regulation [30–33] and fur-

ther, may explain the mixed findings with respect to obesity-associated deficits [34–47] (and

see recent review by Bartholdy et al 2016 [48]).

Thus, we hypothesized that increased psychomotor speed and/or poorer inhibitory control

would be associated with increased IR, and further, that this association would be mediated by

increased neural activity in brain areas identified as substrates of salience attribution, cue reac-

tivity, motor speed, and/or decreased activity in those implicated in inhibitory control. To test

the viability of this hypothesis we sought, in a cohort of obese T2DM volunteers in which there

was no correlation between severity of IR and BMI, to identify neural predictors of psychomo-

tor speed, impulsivity, and inhibitory control capacity and to determine to what extent the sen-

sitivity of these predictors to IR mediated inter-individual differences in performance.

Materials & methods

The Vanderbilt University IRB approved this study. Written consent was obtained from all

participants.

Participants

Participants were right handed male and female adults (BMI 30–50 kg/m2) aged 31–60 years,

with type 2 diabetes mellitus (T2DM; Hemoglobin A1c [HbA1c] 6–8%), stable body weight for

three months, no prior insulin treatment, no contraindications for MRI, and no other signifi-

cant medical conditions or history (tobacco use in previous 3 months, substance abuse or

dependence (DSM-IV), current Axis I disorders (DSM-IV), centrally acting medications other

than SSRIs in previous year, weight loss surgery, ongoing use of dietary or weight loss supple-

ments; women only: post-menopausal, pregnant; polycystic ovarian disease). Most participants

(45/47) were using metformin alone for glycemic control.

Study protocol

Prior to the study visit, participants practiced the fMRI stop signal task (SST) in a mock MRI

scanner until their performance measures were stable. For the imaging study visit, participants

arrived at the Vanderbilt Clinical Research Center (CRC) at 1:30 pm for an overnight stay,

having abstained from alcohol, caffeine, and physical exercise for 48 hours, and consuming

breakfast and a light lunch before 12 pm, and consuming only water until conclusion of the

day’s imaging. Following full clinical and metabolic workup, fasting participants were brought

to the MRI suite, re-screened for MRI contraindications, re-practiced the SST, and underwent

structural and functional neuroimaging, beginning at ~4:00 pm. Upon completion of all stud-

ies, participants returned to the CRC, consumed an evening meal, then fasted until 10:00 am,

when blood samples were collected for measurement of fasting plasma insulin and glucose.

Blood samples were processed immediately and plasma was frozen and stored at -80˚C for

insulin and glucose analysis.

Neural basis of impulsivity in T2DM
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fMRI

Stop signal task. Participants completed three fMRI runs of the SST design used by Li

et al. [49], each lasting ~10 minutes and consisting of 75 go trials and 25 stop trials (3:1 go:

stop) presented in pseudo-random order (Figure A in S1 File). Go trials began with a yellow

fixation dot fore-period (pseudo-randomized 1–5 seconds) followed by a green circle that

served as the go cue for participants to respond with a right index finger button press. The

green circle disappeared following a button press or after 1s had passed, whichever came first.

Go trials where the button press was premature, later than 1s, or absent, were considered

incorrect. Stop trials were the same as go trials except that a red X, serving as the stop cue,

appeared after a variable stop signal delay (SSD). Upon the appearance of the red X, partici-

pants tried to withhold their response. There was a fixed 2s interval between trials. E-Prime

Software v2.0 (Psychology Software Tools) controlled stimulus presentation and response

monitoring.

SST analysis. Percentage of successful go and stop trials, and median go response times

(mGRT) for successful go trials were calculated for each participant. Using the approach of

Li and colleagues [49], custom Matlab (Mathworks) code was used to calculate the critical

stop signal delay (cSSD, the time interval between go and subsequent stop signal for which

50% of go responses can be successfully countermanded) and the stop signal response time

(SSRT = mGRT-cSSD, time required to successfully complete the countermanding stop pro-

cess). Participants’ SST results were included in the analyses only if they met performance

thresholds previously shown to robustly characterize behavioral components of the SST [50,

51]: successful inhibition on 25–75% of stop trials and >60% response rate on go trials. We

also confirmed that consistent with the race model assumptions, participants’ stop error

response times were shorter than their mGRT.

Image acquisition. Images were acquired on a 3T Phillips Achieva MRI Scanner using

an 8-channel head coil. 3D T1-weighted TFE gradient echo anatomical images (isotropic

1mm3) were collected with 5˚ flip angle, TI/TR/TE = 959.74/8.3/3.9 ms, in 170 volumes. T2�-

Weighted Gradient FFE echoplanar BOLD fMRI images (TR/TE = 2000/35 ms, 79˚ flip angle,

SENSE factor = 1.8, 3x3x4.5mm3 voxel size interpolated to 1.8x1.8x4.95mm) were acquired

parallel to the AC-PC line.

fMRI analysis. Analyses used SPM8. Data were motion corrected, slice-time corrected,

and high-pass temporally filtered with a cutoff of 128 sec. Participants exceeding strict motion

parameters (2˚ rotation, 2mm translation) were removed from future analysis. The mean func-

tional image from the slice time correction was then coregistered with the high-resolution 3D

anatomic image, normalized to MNI space, and spatially smoothed (Gaussian kernel 6.0 mm

FWHM) [52].

Four types of trial outcomes were modeled: go success (GS), go error (GE), stop success

(SS), and stop error (SE). Trial onset and reaction times, together with motion covariates, were

entered into a statistical design matrix for each participant using a general linear model

(GLM). Event onsets associated with each trial type were convolved with a canonical hemody-

namic response function and used to construct first-level contrasts.

To screen for candidate neural mediators of SST performance, we generated contrasts

between successful and unsuccessful stop trials (SS>SE, SE>SS) and between successful stop

and go trials (SS>GS) to identify volumes of interest (VOIs) in which mean contrast could be

regressed against SST performance. As these initial screens for candidate mediators were

exploratory, we used a relatively relaxed threshold (punc < 0.001, kE = 10), chosen to balance

sample size, anatomic specificity, and clinical significance [53]. Candidate VOIs identified by

these screens were used to test for an association of activation strength with SST performance

Neural basis of impulsivity in T2DM
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parameters across participants. We also performed whole brain voxel-level regression of con-

trast strength against SST performance parameters to independently and directly screen for

brain areas in which contrast strength was a predictor of SST performance, and/or was itself

predicted by BMI and/or HOMA-IR (punc<0.005, kE = 10).

Marsbar (http://marsbar.sourceforge.net/) was used to calculate the individual participant

weighted parameter estimates of the activity within the VOIs [54].

Central insulin resistance

While central IR in the absence of significant peripheral resistance has been observed in the

setting of Alzheimer’s disease, the preponderance of available data suggest a reasonable corre-

lation of central with peripheral IR in T2DM [7, 12]. We therefore used the homeostatic model

assessment of insulin resistance (HOMA-IR) score [55], based on fasting plasma insulin and

glucose concentrations, as a surrogate reporter of central IR. Metformin was the sole form of

glycemic control for almost all participants (45/47), and metformin dose was therefore

included as a covariate in all analyses.

Statistical analyses

All statistical analyses were performed using SPSS v22.0.0.

Behavioral data. Sensitivity of SSRT, cSSD and/or mGRT to obesity (BMI) and

HOMA-IR, was assessed using multivariate regression with BMI and HOMA-IR as indepen-

dent predictors, with age, sex, and metformin dose included as covariates. Absent evidence of

any BMI x HOMA-IR or HOMA-IR x metformin interactions, none were included in the final

models.

fMRI data. Analysis of fMRI data comprised tests for associations of SST performance

with strength of neural activation on the one hand, and associations of neural activation

strength with degree of obesity and/or insulin resistance on the other. Neural predictors of

SST performance were identified by multivariate regression of activation contrasts against

individual SST performance parameters, with age, sex, and metformin dose included as covari-

ates. Similarly, metabolic predictors of activation were identified by multivariate regression of

activation contrasts using BMI and HOMA-IR as independent predictors. Age, sex, and met-

formin dose were included as covariates in initial analyses, and were retained in the final

model if they were significant contributors to overall variance. As for behavioral analyses,

absent evidence of any BMI x HOMA-IR or HOMA-IR x metformin interactions, none were

included in the final models.

Mediation analysis. A bootstrapped mediation model (PROCESS v 2.13, Hayes; imple-

mented in SPSS v 22.0.0) was used to determine the degree to which the impact of BMI or

HOMA-IR on activation of specific brain areas mediated any association of stop signal perfor-

mance with BMI or HOMA-IR. Within this model we examined both the direct and indirect

mediation effects. Absence of a zero crossing in the 95% confidence interval for the mediating

path coefficient, together with κ2� 0.1 was taken as evidence for mediation.

Results

Demographics and clinical information

All forty-seven participants (18 male / 29 female; age, 46.7 ± 6.9 yrs (mean ± SD), range 31–60;

BMI, 37.0 ± 4.5 kg/m2, range 28.7–49.8; HOMA-IR, 8.2 ± 4.9, range 2.5–25.6; HbA1c, 7.1 ±
1.4, range 5.8–9.2) met the SST performance criteria and were included in behavioral analyses.

Of these, a subset of thirty (age, 48.1 ± 6.9 yrs, range 36–60; BMI, 36.5 ± 4.0 kg/m2, range 28.7–
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45.1; HOMA-IR, 7.2 ± 4.1, range 2.5–17.9; HbA1c, 7.3 ± 0.8, range 5.9–9.1; male/female, 12/

18) met the more stringent head motion criteria for inclusion in the fMRI analyses. This fMRI

sub-group did not differ significantly from the parent group in clinical measures, including

age, BMI, HOMA-IR or HbA1c, though the fMRI subgroup trended marginally older in age,

and lower in HOMA-IR. Demographic and clinical information for the parent and fMRI sub-

groups are summarized in Table 1.

Correlations amongst metabolic factors

Participants’ BMI and HOMA-IR were not correlated whether controlling for age, metformin

or sex (R2 = 0.04, p = 0.21 parent behavioral cohort; R2 = 0.007, p = 0.68 fMRI subgroup of par-

ent cohort) or not (R2 = 0.04, p = 0.19 behavioral; R2 = 0.003, p = 0.77 fMRI), allowing us to

examine the association of behavioral and neural responses with IR and obesity independently.

The low correlation between HOMA-IR and BMI in both parent cohort and fMRI subgroup

occurred despite broad and relatively even sampling of HOMA-IR and BMI, as judged by their

respective inter-quartile ranges (Table 1). Nonetheless, the absence of lean volunteers in this

study, which focused on volunteers with T2DM, may have reduced our power to detect associ-

ations of BMI per se with behavior and/or neural response.

Consistent with the absence of any correlation between BMI and HOMA-IR, we also found

no correlation of fasting plasma glucose or insulin with BMI.

Metabolic predictors of SST performance

SST performance was similar to that previously observed in comparable healthy control partic-

ipants [45, 49, 56]: cSSD (310 ± 119 ms; mean ± SD), mGRT (605 ± 107 ms), SSRT (295 ± 32

ms), was not significantly different in the fMRI subgroup, and did not differ significantly

between male and female participants in either case (Table A in S1 File). Consistent with the

race model premise [57, 58], participants’ response times for SE trials were shorter than for GS

trials.

Table 1. Demographic and clinical data.

Parent (Behavioral) Group fMRI Sub-group pmean
a pvar

a

N 47 30 -

Sex 29F, 18M 18F, 12M -

Race b 20B, 2H, 25W 11B, 1H, 18W -

Education (yrs) 14.8 ± 2.0 15.07 ± 2.0 0.926

Age (yrs) c 46.7 ± 6.9 [40.0 48.0 51.0] 48.1 ± 6.9 [41.8 49.0 52.5] 0.06 0.78

BMI (kg/m2) c 37.0 ± 4.5 [33.9 36.7 40.5] 36.5 ± 4.0 [33.6 36.8 40.3] 0.21 0.11

HOMA-IR c 8.2 ± 4.9 [5.0 6.7 10.1] 7.2 ± 4.1 [4.4 6.3 8.5] 0.07 0.27

Fasting Glucose (mg/dl) c 133 ± 41 [103 128 153] 129 ± 41 [102, 120, 144] 0.42 0.95

Fasting Insulin (μu/ml) c 24.2 ± 11.4 [16.1 22.5 28.6] 22.3 ± 9.9 [14.8 21.3 23.5] 0.11 0.3

HbA1c c 7.1 ± 1.4 [6.6 7.2 7.8] 7.3 ± 0.8 [6.6 7.3 7.8] 0.23 0.13

Parent (Behavioral) Group: volunteers whose SST performance met criteria for inclusion in behavioral analyses (see Methods).

fMRI subgroup: volunteers meeting SST performance criteria whose fMRI head motion met criteria for inclusion in fMRI analyses. All data mean ± SD.
a probability of difference in mean, variance, between parent cohort and fMRI subgroup
b B—black, H—Hispanic, W–white
c continuous variables reported as mean +/- sd, [25th 50th 75th] percentiles

https://doi.org/10.1371/journal.pone.0189113.t001
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BMI was not a predictor of any component of SST performance, but HOMA-IR was: cSSD

(r = -0.35, p = 0.03) and mGRT (r = -0.36, p = 0.02) decreased with increasing HOMA-IR (Fig

1; covariates: BMI, age, metformin). Interestingly, metformin dose was also a significant inde-

pendent predictor: cSSD (r = -0.46, p = 0.003) and mGRT (r = -0.47, p = 0.002) decreased with

increasing metformin dose. HOMA-IR was not a predictor of SSRT however, suggesting that

IR reduces cSSD by accelerating go speed.

Because of the co-linearity of HOMA-IR with fasting plasma glucose (FPG) and insulin, we

tested each of these as independent individual predictors of neural activation. Consistent with

the association of shorter cSSD and mGRT with increasing HOMA-IR, higher FPG was also a

significant predictor of shorter cSSD (r = -0.40, p = 0.01; covariates: BMI, age, metformin) and

mGRT (r = -0.34, p = 0.03; covariates: BMI, age, metformin), although fasting plasma insulin

was not.

Neural predictors of SST performance

Consistent with previous studies of response inhibition [49, 59–62], we observed greater bilat-

eral activation of elements of inhibitory networks [49, 61–64] for SS>SE trials, including stria-

tum, precentral (M1) and supplementary (SMA) motor cortex (Fig 2A, Table 2). SE>SS

revealed greater bilateral activation of insula, medial frontal gyri (MeFG)/preSMA, cingulate

gyrus and cerebellum, areas implicated in attention, salience attribution, performance/error

monitoring and motor speed (Fig 2B, Table 2).

Surprisingly however, in none of the putative inhibitory areas identified by SS>SE did con-

trast strength (CONSS>SE) predict SSRT. Rather, CONSS>SE in putamen was a predictor of lon-

ger mGRT that, given the lack of association with SSRT, can be reframed as an association of

CONSE>SS with shorter mGRT, consistent with greater “go”-associated putamen activation in

fast responders (Fig 3A). Whole brain voxel-wise regression of participants’ CONSE>SS against

mGRT confirmed the ROI-based association (Fig 3B).

Fig 1. HOMA-IR is the dominant predictor of overall Stop Signal Task performance in obese T2DM participants. A) Increasing insulin resistance

(HOMA-IR) predicts poorer overall performance (shorter critical stop signal delay, cSSD). B) This degradation in SST performance is a consequence of

faster go speeds (shorter mGRT) with increasing insulin resistance. Models include age and metformin dose as covariates.

https://doi.org/10.1371/journal.pone.0189113.g001
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SS>SE and SE>SS contrasts are well controlled with respect to trial type, attentional

demand, sensory processing, behavioral response set, and shift of response set. However differ-

ences in level of activation of inhibitory circuits between SS and SE trials may be small, dimin-

ishing the sensitivity of this contrast to earlier components of inhibition [60]. Conversely,

SS>GS has greater sensitivity to, but less specificity for inhibitory processing. Consistent with

this, voxel-level regression across the whole brain identified several areas where CONSS>GS

was a significant predictor of mGRT or SSRT (Figure B, Table B in S1 File). In a network com-

prising largely right hemisphere and bilateral structures (right MFG, PCG, angular gyrus, bilat-

eral cuneus, thalamus; left SMA), increasing activation predicted shorter mGRTs, while the

opposite was the case for a predominantly left hemisphere network (left putamen, MTG, IFG,

insula; right amygdala), in which increasing activation was associated with longer mGRTs.

Thus increased activation of the right hemisphere network appears to promote faster respond-

ing to “go” cues, while increasing activation of the left hemisphere network is associated with

slower responding. Interestingly, we observed a congruent pattern of brain-behavior correlates

Fig 2. Group contrast T-maps comparing activity between stop success (SS) and stop error (SE) trials, thresholded at punc<0.001, kE>10 voxels. A)

SS>SE reveals greater activation in SS compared with SE trials in bilateral dorsal striatum, precentral gyrus, supplementary motor and visual areas, as well

as the right cingulate gyrus, temporal gyri, and right superior parietal lobule. B) SE>SS reveals greater activation for stop error trials in bilateral cingulate

gyrus, medial frontal gyrus/preSMA, insula, and cerebellum.

https://doi.org/10.1371/journal.pone.0189113.g002
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for SSRTs: increased activation in a left frontal cortical network (IFG, MFG, SFG) predicted

shorter SSRTs, while greater right hemisphere activation in insula and supramarginal gyrus

was associated with longer SSRTs (Figure B, Table B in S1 File).

Impact of metabolic factors on neural correlates of SST performance

Consistent with the faster go speeds observed in participants with higher fasting plasma glu-

cose and greater insulin resistance, FPG and/or HOMA-IR were significant predictors of acti-

vation in several areas identified as neural correlates of mGRT: increasing FPG (r = -0.35,

p = 0.03) and HOMA-IR (r = -0.31, p = 0.04; Fig 4A) both predicted increasing activation of

right putamen in failed compared with successful stop trials (CONSE>SS), and increasing

CONSE>SS was itself a predictor of faster go speeds. Similarly, increasing FPG and HOMA-IR

(Fig 4B) predicted greater CONSS>GS activation for four areas in which such an increase was

also a predictor of shorter mGRT: right precuneus (FPG r = 0.45, p = 0.03; HOMA-IR r = 0.71,

p< 0.001), right thalamus (FPG r = 0.42, p = 0.04; HOMA-IR r = 0.43, p = 0.031), right pre-

central gyrus (FPG r = 0.47, p = 0.03; HOMA-IR r = 0.49, p = 0.014), and left SMA (FPG

r = 0.48, p = 0.014; HOMA-IR r = 0.52, p = 0.008).

Though we found no association of SSRT or mGRT with BMI, we nonetheless tested for

evidence that BMI might predict strength of activation in areas identified as neural predictors

of SST performance. Consistent with BMI’s failure to predict any aspect of SST performance, it

also failed to predict activation contrast for any neural predictors of SSRT. Higher BMI was,

Table 2. Brain areas showing significant differences in activation between stop success (SS) and stop error (SE) trials.

Contrast Brain Region Hemi. Voxels Max. T-statistic x y z

Anterior Cingulate Gyrus R 13 5.5957 6 32 -2

Caudate/Putamen L 147 6.4413 -18 11 -5

R 196 6.8297 18 14 -2

Hippocampus L 13 4.6395 -33 -43 1

Middle Occipital Gyrus L 57 5.6398 -42 -70 7

R 44 5.614 21 -85 7

SS > SE Middle Temporal Gyrus R 37 5.3596 45 -67 4

Parahippocampal Gyrus L 10 4.103 -24 -19 -17

Postcentral Gyrus R 11 4.5868 54 -16 49

Precentral Gyrus L 54 5.9114 -33 -19 49

R 85 4.9799 33 -28 49

Precuneus L 54 4.9169 -30 -73 34

R 17 5.4281 27 -76 34

SMA L/R 264 5.8732 -3 -25 58

Superior Parietal Lobule R 16 5.3096 24 -55 55

Cerebellum L 14 3.7239 -36 -58 -26

R 75 5.1984 21 -58 -20

SE > SS Cingulate Gyrus L/R 17 4.5074 0 23 34

Insula L 37 4.5641 -45 5 -5

R 18 4.94 42 8 -5

preSMA / Medial Frontal Gyrus R 37 4.8283 12 20 61

L 11 4.3431 -9 26 58

All contrasts generated using punc<0.001 and kE>10.

https://doi.org/10.1371/journal.pone.0189113.t002
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however, associated with smaller SS>GS activation in right MFG (CONSS>GS vs BMI: r =

-0.56, p = 0.004; covariates: BMI, age, metformin; Fig 5), itself a predictor of longer mGRT.

Impact of HOMA-IR on neural activation mediates heightened impulsivity

with increasing insulin resistance

Finally, we determined whether any of the brain regions identified as neural predictors of

mGRT mediated the association of faster go speeds with increasing insulin resistance. Path

analysis [65] confirmed the association of right putamen activation with HOMA-IR as a signif-

icant mediator of the faster go speed (shorter mGRT) observed with greater insulin resistance,

with a medium to large mediating effect size (κ2 = 0.19, range [0.02–0.46]; Fig 6).

It also provided trend level support for a similar mediating role for the impact of insulin

resistance on a network of brain areas including right precentral gyrus, precuneus and thala-

mus, and left SMA (Figure C in S1 File).

Fig 3. Activation in bilateral striatum predicts faster go speeds. A) Significant association of faster go speeds (shorter mGRT) with greater activation

contrast for failed vs. successful stop trials (CONSE>SS) in bilateral striatum, consistent with greater “go”-associated putamen activation in fast responders.

(Striatal ROIs extracted from group SS>SE contrast map, Fig 2A). B) Whole brain voxel-wise regression of CONSE>SS against mGRT confirms a strong

negative correlation in putamen bilaterally. (Map thresholded at an uncorrected p<0.005).

https://doi.org/10.1371/journal.pone.0189113.g003

Neural basis of impulsivity in T2DM

PLOS ONE | https://doi.org/10.1371/journal.pone.0189113 December 11, 2017 9 / 22

https://doi.org/10.1371/journal.pone.0189113.g003
https://doi.org/10.1371/journal.pone.0189113


Fig 4. Insulin resistance predicts brain activation in brain regions whose activities are themselves predictors of mGRT. A) Increasing HOMA-IR

predicted decreasing activation for successful vs failed stop trials (CONSS>SE) in right putamen, where lower contrast predicted faster go speeds (shorter

mGRT). B) Increasing HOMA-IR predicted increasing activation for go compared with stop success trials (CONSS>GS) in right precuneus, right thalamus, left

supplementary motor area, and right precentral gyrus, brain areas where greater contrast predicted faster go speeds.

https://doi.org/10.1371/journal.pone.0189113.g004

Fig 5. BMI predicts activation in right middle frontal gyrus. Decreasing CONSS>GS activation with increasing

BMI in right middle frontal gyrus, an area whose activation strength is a significant predictor of go speed (i.e.

increasing activation predicted shorter mGRT, see Table B, Figure B panel A, in S1 File).

https://doi.org/10.1371/journal.pone.0189113.g005
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A similar analysis for FPG found that with the exception of left SMA (κ2 = 0.13, range

[0.02–0.32]), the association of shorter mGRT with increasing FPG was not significantly medi-

ated by an impact of FPG on regional brain activation.

These results suggest that insulin resistance may heighten impulsive responding through its

impact on a network of cortical and subcortical brain areas subserving attentional salience pro-

cessing, and motor speed.

Fig 6. Impact of insulin resistance on striatal activation mediates impulsivity in T2DM. Through an association of increasing activation (CONSE>SS) with

increasing insulin resistance (path a: HOMA-IR ->CONSE>SS), putamen activation, a predictor of faster go speeds (shorter mGRT; path b: CONSE>SS ->
mGRT) mediates the faster go speeds (shorter mGRT) observed with greater insulin resistance (path c: HOMA-IR ->mGRT) observed in obese T2DM

participants with a medium to large effect size (κ2 0.19, 95% CI = 0.015–0.46. Bootstrapped path coefficients a, b, c, c’ and [95% confidence intervals]

determined using PROCESS in SPSS 22.

https://doi.org/10.1371/journal.pone.0189113.g006
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Discussion

Our principal finding is that in obesity-associated T2DM inter-individual differences in overall

impulse control, reflected in SST performance, are driven by an association of faster motor

response times with increasing IR.

This result is consistent with multiple studies that implicate central insulin signaling as a

modulator of activity in neural circuits subserving a wide range of behaviors including cogni-

tion, impulsivity and behavioral self-regulation [3–11]). It is also consistent with the relatively

small number of studies that have examined the relationship between impulsivity and markers

of insulin resistance. Thus Lasselin et al. found choice reaction times in T2DM patients receiv-

ing insulin were similar to matched healthy controls, and both were longer than T2DM

patients receiving no or only oral antidiabetic medications, whose HbA1c was also signifi-

cantly greater, consistent with poorer insulin signaling [30]. Hawkins et al. (2016) [31] found

that in otherwise healthy lean and obese adults performing a go–no-go task, higher fasting

plasma glucose was a predictor of more commission errors and faster reaction times, and irre-

spective of BMI, those whose fasting plasma glucose was in the “pre-diabetic” range (>100

mg/dL) had significantly more commission errors. Galioto et al., found that change in

HOMA-IR, but not HbA1c, predicted changes in cognitive and psychomotor scores from

baseline in obese patients one year following bariatric surgery [32]. Finally, Eisenstein et al.

observed that lower insulin sensitivity predicted greater delayed reward discounting in obese

volunteers [33].

The weak association of SST performance with BMI in the present study is consistent with

the majority of prior findings: while there is evidence for impaired inhibitory control with obe-

sity in children and adolescents, and obese adolescents with faster inhibitory responses have

better weight loss outcomes [34–37] [38], the evidence for specific obesity-associated compro-

mise of performance in reactive motor inhibition, cognitive control or executive function in

adults is mixed. While some studies report longer SSRTs in obese compared with healthy

weight subjects [39–41], the majority find no difference [37, 42–47] (and see recent review by

Bartholdy et al 2016 [48]). While less frequently reported, the majority of studies find no asso-

ciation of mean response time (MRT) or go speed with BMI [48], though Grant et al. found

longer reaction times in obese compared with normal weight adults [44], and Batterink et al.

found faster reaction times with increasing BMI in adolescent girls performing a food-specific

Go–No-Go task [34]. In these studies, however, obese participants were described as otherwise

healthy; their IR was not assessed, and its potential importance as an explanatory variable in

obese individuals was not explored.

An important caveat is that the focus here is on obese volunteers with T2DM. It is possible

that by including only obese volunteers we may be underpowered to detect obesity-associated

contributions to behavioral and neural variability due to a limited BMI range, a feature that

may also contribute to the lack of significant correlation of IR severity with BMI in this cohort.

While we cannot exclude this possibility, and follow-up studies would be strengthened by the

inclusion of lean volunteers, our study subjects’ BMIs were evenly distributed across a range

(median BMI = 36.7, range = 21.1, interquartile range = 6.6) sufficient to have revealed signifi-

cant behavioral, neural, and/or molecular associations in previous individual studies [33, 66–

70] and see reviews [38, 48].

Impact of obesity on neural correlates of SST

While a poor predictor of SST performance (cSSD; SSRT) or of activation of the strongest neu-

ral predictors of SSRT (left SFG, MFG, IFG), higher BMI was nonetheless a predictor of

reduced activation in rMFG (CONSS>GS) in the present study. Similar associations have been
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found in adolescent girls performing a food-cue specific go–no-go task [34], and in women

performing the SST [45]. Curiously however, these BMI-associated neural deficits were not

significant predictors of motor inhibitory performance. Rather, as noted earlier, Batterink

et al. found that greater BMI predicted faster response times both for go trials and no-go

errors, as well as greater no-go error rates in adolescent girls [34], while Hendrick et al. found

no difference in SST performance between obese and lean women, nor any decrease in activa-

tion of inhibitory networks with increasing BMI. Rather they observed a BMI-associated

decrease in activation of a network of areas supporting saliency processing [45]. These findings

are consistent with our own that while increased BMI was indeed associated with less rMFG

activation for SS>GS, the reduced activation of right frontal cortices, including rMFG, was

associated with improved rather than degraded overall SST performance (longer cSSD), a lon-

ger mGRT, and had no significant impact on SSRT. Thus it appears that with increasing BMI,

activation of right frontal cortex is reduced in a manner that leads to slower “go” responses.

This result was unanticipated, and indeed contrary to our initial hypothesis that greater BMI

would be associated with impaired overall performance (shorter cSSD) arising from blunted

activation of inhibitory areas recruited during stop trials, with a consequent increase in SSRT.

Taken together with the prior behavioral and fMRI results [34, 45], our findings are consistent

with a more general role for right PFC areas in rule maintenance, and contextual response

selection and/or response switching rather than inhibition. Thus with increasing BMI,

impaired frontal activation may slow contextual processing and response selection leading to

slower go speeds (longer mGRT) and reduced overall impulsivity (longer cSSD).

Impact of insulin resistance on neural correlates of SST

Our finding that an association of increased striatal activation with more severe IR mediated

the faster go speeds observed in participants with greater HOMA-IR supports the idea that,

given the broad distribution of IRs in the brain, insulin acting centrally might influence brain

networks supporting a diverse repertoire of behaviors and cognitive functions. Manipulation

of insulin levels, whether systemically [5, 7, 8, 71–75] or in CNS directly [3, 4, 6, 9, 76–79],

modulates basal neural activity as well as the amplitude of task-associated neural activation.

These effects have been observed not only in areas regulating energy homeostasis, but also

more broadly in areas implicated in reward, motivation, attention and cognition (for reviews

see [10] [11]).

Since the present study did not directly measure brain IR, all our behavioral and neural

correlates are with HOMA-IR. This is an important caveat. Nonetheless, several lines of

evidence suggest that central insulin resistance may underlie, at least in part, the observed

association of increased striatal activation with increasing HOMA-IR. Obesogenic diets

quickly induce insulin resistance in diverse brain areas in animal models [21, 80–82], and

the severity of peripheral and central IR in these models are correlated. A causal association

is suggested by the observation that peripheral insulin resistance can be modulated by

changes in central insulin signaling tone in humans [4, 83]. Finally, in lean, overweight and

obese volunteers, peripheral IR is a significant predictor of intranasal insulin’s ability to

modulate cortical and subcortical neural activity [84], and in T2DM patients greater

peripheral IR is associated with increasing disruption of brain network connectivity [85,

86]. Taken together, these findings suggest that in the present study, HOMA-IR is a reason-

able surrogate marker of central IR, and while characterization of the degree of central

insulin resistance was beyond the scope of this study, our finding is consistent with prior

demonstrations of a direct effect of central insulin signaling on neural activity in animal

models [22, 87] and humans [3, 6, 9, 76, 78, 79, 84, 88, 89].
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Though only trend level (p< 0.10), the association of heightened activation of salience attri-

bution areas with increased IR generalizes the previously reported association of IR severity with

activation of the insula by salient food cues [90]. Indeed, the frequency of comorbid IR in obe-

sity, and the now classic and robust finding of increased activation of networks supporting atten-

tion and salience attribution by obesogenic food cues in obese compared with lean participants

[34, 67, 91–96], suggest that IR may contribute in a key way to obesogenic feeding behaviors by

heightening the saliency of, and impulsive responding to feeding cues in the environment.

Thus it appears likely that IR rather than obesity per se may underlie, at least in part, the

obesity-associated increases in impulsivity reported in previous studies: when compared with

lean healthy controls, nominally “healthy” obese participants enrolled in previous studies are

likely to have had varying degrees of increased IR, as well as other clinical features of metabolic

syndrome.

Central insulin resistance and impulsivity: A pathway to obesity?

Obesogenic diets induce central insulin resistance [21, 80], the severity of which is correlated

with the degree of peripheral impairment, allowing HOMA-IR to serve as a surrogate [7, 12].

The impact of blunted insulin signaling on dopamine systems, the association of insulin resis-

tance with obesity, and the compromise of dopamine signaling seen in obesity, together sug-

gest that it may be central insulin resistance, rather than obesity per se, that compromises

appropriate regulation of hedonic feeding behavior.

The present study provides support for this idea, showing that increasing IR potentiates the

activation of brain areas subserving attention, salience attribution, motivation and motor

speed [97–99] in a manner that leads to heightened impulsive responding. These results sug-

gest that insulin resistance may promote goal-directed impulsive responding by potentiating

activation of attention and motor networks in response to salient food cues. Consistent with

this idea, the areas identified in the present study as well as those identified by Jastreboff and

colleagues as IR- and/or glucose sensitive mediators of cue induced food craving in obese par-

ticipants [74], correspond closely with those identified by Stoeckel and colleagues as displaying

heightened activation in response to food cues compared with non-food cues in obese com-

pared with non-obese participants [95]. Furthermore, Eisenstein and colleagues observed that

in obese volunteers, blunted insulin sensitivity reduces the value of future reward, suggesting

that the benefits of weight loss may be discounted to a greater extent with increasing insulin

resistance [33].

This association of increased IR with increasing activation of circuits driving salience attri-

bution and goal-directed impulsive responding, coupled with greater discounting of future

rewards of weight loss suggests a vicious cycle in which consumption of obesogenic foods

(which are generally more palatable and rewarding!) increases central IR, with a consequent

dysregulation of DA tone leading to heightened saliency of obesogenic food cues, increased

impulsive feeding, and a further increase in IR. It also provides a molecular and neural ratio-

nale for why control of food intake may be especially challenging for the obese diabetic patient:

in an environment filled with salient food cues, central IR heightens the saliency of obesogenic

food cues, while increased impulsivity and motivation to act on these cues is abetted by the

ready availability of highly palatable obesogenic and diabetogenic foods.

Cellular and molecular basis for impaired SST performance with insulin

resistance

Insulin signaling plays an important role in setting striatal DA tone. Depressed insulin signal-

ing in striatal DA terminals leads to reduced DAT surface expression, blunting DA clearance
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[16, 87], altering reward learning behavior and distorting motivational salience [19, 100, 101].

Decreased availability of striatal D2 dopamine receptors with increasing BMI is a feature of

morbid (BMI> 40) obesity [102], and is a predictor of decreased activity in frontal cortical

areas subserving cognitive processes related to impulse control, response selection, error detec-

tion and performance monitoring [103].

Psychomotor speed, an important component of impulsivity [27], is heavily dependent on

striatal DA [23–26]: dorsal striatal D2R antagonism slows go responses [28] while elevated syn-

aptic DA facilitates them [104], and promotes heightened impulsivity in humans [29]. This

suggests that obesogenic/diabetogenic diets may, by increasing central IR, blunting striatal DA

clearance and increasing DA tone, heighten impulsivity by increasing psychomotor speeds.

Our results support such a model: IR but not BMI, was the principal predictor of SST perfor-

mance in obese volunteers with T2DM, and its impact was to increase go speed, consistent

with an IR-associated hyper-DAergic state, an association mediated by the impact of IR on

activation of a striato-cortico-thalamic network that was itself a predictor of go speed.

Conclusions

Notwithstanding the compelling body of literature confirming the importance of fronto-stria-

tal networks as the neural correlates of inhibitory control, our results suggest that in the setting

of obesity-associated T2DM, it is the impact of insulin resistance on brain networks driving go

speeds (mGRT), rather than that of BMI on networks driving stop speeds (SSRT), that distin-

guishes obese individuals with poorer (shorter cSSD) from those with better overall impulse

control (longer cSSD). This increased motor impulsivity is mediated by an IR-associated

increase in excitability of dorsal striatum within broader cortico-striatal-thalamo-cortical net-

works subserving attention, salience attribution, action selection and cognitive control. These

findings are consistent with the idea that insulin signaling may act in the central nervous sys-

tem to tune dopamine tone in circuits central to the reward learning, attribution of salience,

and response selection, the distortion of which by central insulin resistance, may increase the

salience, impulsive seeking and consumption of the very obesogenic/diabetogenic foods that

drive insulin resistance. Finally, the present study, suggests that the impact of impairments in

insulin signaling in obese populations cannot be discounted, and future studies of the influ-

ence of obesity on brain-behavior relationships should control for IR.

Supporting information

S1 File. Table A: Stop Signal Task (SST). Parent (Behavioral) Group: volunteers whose SST

performance met criteria for inclusion in behavioral analyses (see Methods). fMRI subgroup:

volunteers meeting SST performance criteria whose fMRI head motion met criteria for inclu-

sion in fMRI analyses. All data mean ± SD.

Table B: Impulsivity, Inhibitory, and Error Monitoring Circuits in the Stop Signal Task:

Neural correlates and sensitivity to BMI and/or HOMA-IR. Areas identified as potential

neural predictors of SST performance based on whole brain voxel-wise regression of activation

contrast (SS>GS) with mGRT and SSRT. Brain regions and associated t-statistic, cluster sizes,

and MNI coordinates are from the location of peak voxel at each local cluster maxima. Regions

thresholded at punc<0.005, kE>10 voxels. † HOMA-IR is a predictor of contrast strength. �

BMI is a predictor of contrast strength.

Figure A: The Stop Signal Task. A) The stop signal task in an fMRI design where the green

circle begins each trial and is preceded by a variable-length fore-period. In stop trials, the red

X is presented following a variable stop signal delay. A button press on a go trial is a go success

(GS) while failing to press the button on a go trial is a go error (GE). Inhibiting the button
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press on a stop trial is a successful stop (SS) while pressing the button on a stop trial is a stop

error (SE). B) The horse race model assumes that go and stop processes are independent

where the inhibitory response (stop signal response time) is calculated by subtracting the criti-

cal stop signal delay (time between “go” signal [green circle] and “stop” signal [red X]) from

the median go response time. SSRT—stop signal response time; SSD—stop signal delay;

mGRT—median go response time.

Figure B: Neural predictors of SST performance. Voxel-wise whole brain regression identi-

fied areas having significant association of SS-GS contrast (CONSS>GS) with A) mGRT; B)

SSRT. Faster go responses (shorter mGRT) were associated with greater activation of a largely

right hemisphere network of motor control and attentional regions (see Table B) including

precentral gyrus, supplementary motor area, middle frontal gyrus, precuneus, angular gyrus

and thalamus, but less activation in left IFG/ventral insula, middle temporal gyrus, and amyg-

dala. Faster stopping was associated with increased activation in the left inferior, middle, and

superior frontal gyri and less activation in the supramarginal gyrus and the insula. Figures

thresholded at punc<0.001, kE>10 voxels.

Figure C: Association of strength of activation of a cortico-striatal network with insulin

resistance mediates the faster go speeds (shorter mGRT) observed with greater insulin

resistance in obese T2DM participants. Cortico-striatal circuits subserving impulsivity (red

ROIs whose activation contrast predicts mGRT) mediate HOMA-IR’s effect on mGRT in the

SST. HOMA-IR was at least a trend level predictor of activation (a) in highlighted striatal and

frontal cortical areas for which whole brain voxel-wise regression confirmed activation

strength was a predictor of mGRT SST (b), and these paths (axb) were significant mediators of

the association of faster go speeds (shorter mGRT) with increasing insulin resistance

(HOMA-IR). Table shows associated path coefficients, with 95% confidence intervals deter-

mined by bootstrapping, and p value.
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